approximation theory which furnishes valuable insight into 'who considers what worthwhile and interesting'.

J. R. R.

20 [2.05.2].-R. P. Feinerman \& D. J. Newman, Polynomial Approximation, The Williams \& Wilkins Co., Baltimore, Md., 1974, viii +148 pp., 24 cm . Price $\$ 13.00$.

A descriptive title for this book is "Degree of convergence for polynomial and rational approximation on the real line". This is a thorough and compact presentation of most of the known theory on this topic, the primary exclusions being those results that involve complex functions, analyticity, etc. There is a short (ten pages) chapter on the existence, uniqueness and characterization of best Tchebycheff approximations; and, otherwise, there is very little that does not relate directly to degree of convergence questions. Thus the scope of the book is rather narrow and it is not suitable as a general reference or text on approximation theory (even polynomial approximation).

As a special topics book, it is well done. The authors have organized the material well and concisely. There is a natural progression from traditional results to current research (to which one of the authors is a principal contributor) which the specialist in approximations theory will find readable and interesting. There are only thirty-eight items in the bibliography. The book is done economically as far as design, copy-editing and production are concerned; and only one misprint was noted (reference [25]).

J. R. R.

21 [2.05, 7].- Herbert E. Salzer, Laplace Transforms of Osculatory Interpolation Coefficients, ozalid copy of handwritten ms. of six sheets, $11^{\prime \prime} \times 16^{\prime \prime}$, deposited in the UMT file.

The Laplace transforms of the n-point $(2 n-1)$ th-degree osculatory interpolation coefficients based on the integral points $i=0(1) n-1$, namely,

$$
\begin{aligned}
& A_{i}^{(n)}(p)=\int_{0}^{\infty} e^{-p t}\left\{\left[L_{i}^{(n)}(t)\right]^{2}\left[1-2 L_{i}^{(n)^{\prime}}(i)(t-i)\right]\right\} d t, \\
& B_{i}^{(n)}(p)=\int_{0}^{\infty} e^{-p t}\left\{\left[L_{i}^{(n)}(t)\right]^{2}(t-i)\right\} d t,
\end{aligned}
$$

where

$$
L_{i}^{(n)}(t)=\prod_{j=0, j \neq i}^{n-1}(t-j) / \prod_{j=0, j \neq i}^{n-1}(i-j)
$$

are expressed exactly as functions of p, for $n=2(1) 9$. Both $A_{i}^{(n)}(p)$ and $B_{i}^{(n)}(p)$ underwent three functional checks that were made on the exact fractional coefficients of $p^{-r}, r=1(1) 2 n$, on the final manuscript. All computations were performed with a desk calculator before 1962, except for the recent completion of the final checks by hand.

Given $f(i)$ and $f^{\prime}(i), i=0(1) n-1$, we have the approximation

$$
\int_{0}^{\infty} e^{-p t} f(t) d t \approx \sum_{i=0}^{n-1}\left[A_{i}^{(n)}(p) f(i)+B_{i}^{(n)}(p) f^{\prime}(i)\right]
$$

AUTHOR'S SUMMARY
22 [2.25, 4, 7].-F. W. Olver, Asymptotics and Special Functions, Academic Press, Inc., New York, 1974, xvi + 572 pp., 24 cm . Price $\$ 39.50$.

This is a very satisfactory book, which combines sound mathematical analysis with

